\qquad covering Similar Figures and Scale Factor

1a. Draw any rectangle (ABCD) that is not a square. Then next to it, draw its image ($\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$) after applying a scale factor of 3 to the original rectangle. Label the dimensions and vertices of the original and the image.

1b. How many copies of the original rectangle will fit inside the new rectangle?
2. Make a figure by connecting the following sets of points on a coordinate grid:

Set 1: $(8,5)(8,8)(0,8)(0,5)(8,5)$
Set 3: $(2,6)(1,6)(1,7)(2,7)(2,6)$
Set 2: $(4,6)(8,2)(0,2)(4,6)$
Set 4: $(6,6)(7,6)(7,7)(6,7)(6,6)$

\qquad
a. Suppose you used the rule ($6 x, 6 y$) to transform the original figure into an image. How would the angles of the image compare with the angles of the original? Explain.
b. Suppose you used the rule $(3 x+1,3 y-4)$ to transform the original figure into an image. How would the angles of the image compare with the angles of the original?
c. Suppose you used the rule $(3 x+1,3 y-4)$ to transform the original figure into an image. Explain how the side lengths of the image compare to the side lengths of the original?
d. Suppose you used the rule $(3 x+1,3 y-4)$ to transform the original figure into an image. Would the image be similar to the original? Explain why or why not.
3. When a figure is transformed to make an image, some features change and some stay the same.
a. Which features change?
b. Which features stay the same?
c. What does the scale factor tell you about how the figure changes?

