\qquad
\qquad

Warm-up: 5.1

Use the column on the right to describe the step-by-step process that I used to solve for x and y. In your description, include reasoning for the computations being made.

8 in.
21 in.
Side length ratio to solve for y

Computation	Explanation
$\frac{21 \text { in } .}{14 \mathrm{in} .}=\frac{y}{8 \text { in. }}$	
$\frac{21 \text { in. }}{14 \mathrm{in} .}=\frac{3}{2}$	
8 in. $\left(\frac{3}{2}\right)=\mathrm{y}$	
$\frac{8}{1}$ in. $\left(\frac{3}{2}\right)=\frac{24}{2}$ in.	
$\frac{24}{2}$ in. $=12$ in.	
$\mathrm{y}=12$ in.	

\qquad
\qquad
Scale factor to solve for \mathbf{x}

Computation	Explanation
$\frac{14 \text { in. }}{8 \text { in. }}=\frac{x}{16 \text { in. }}$	
$\frac{14 \text { in. }}{8 \text { in. }}=\frac{7}{4}$	
16 in. $\left(\frac{7}{4}\right)=\mathrm{x}$	
$\frac{16}{1}$ in. $\left(\frac{7}{4}\right)=\frac{16 \cdot 7}{1 \bullet 4}$ in.	
$\frac{16 \cdot 7}{1 \bullet 4}$ in. $=\frac{16}{4} \bullet \frac{7}{1}$ in.	
$x=28$ in.	
$\frac{28 \cdot 7}{1 \bullet 1}$ in. $=\frac{28}{1}$ in.	

